Честный обзор о солнечных модулях. Утилизация, проблемы, практика.

Хотя в России совсем не развита солнечная энергетика, однако наши сознательные граждане и бизнес очень интересуются темой утилизации солнечных модулей, если они вдруг решат ими пользоваться.


Мы нашли материал, который ответит на некоторые вопросы.



Итак.

Сначала немного терминологии. Часто солнечные модули или панели называют у нас «солнечными батареями». Данный термин может вводить в заблуждение, поскольку «батарея» — слишком широкое понятие. Существуют, например, солнечные коллекторы, назначение которых — нагрев теплоносителя. Понятие «солнечная батарея» отлично подходит к солнечному коллектору. Но это устройство ничего общего с солнечными фотоэлектрическими модулями не имеет, за исключением источника энергии — солнца.


Использованные, отработавшие своё солнечные модули традиционно относятся регуляторами к категории электронного мусора (e-waste). Годовой мировой объём электронного мусора в 2015 составил 43,8 миллиона метрических тонн (оценка). В мире было установлено 115 ГВт солнечных электростанций в 2019 году. Глобальная установленная мощность растёт экспоненциально.


Поэтому через 10-15 лет проблема утилизации солнечных панелей встанет в полный рост.

В связи с тем, что цены на компоненты солнечных электростанций постоянно снижаются, расходы на демонтаж объектов могут оказывать всё большее влияние на экономику проектов, просто по той причине, что их доля в расходах жизненного цикла будет повышаться.


Поэтому эффективный подход к утилизации солнечных панелей важен и с этой точки зрения.


В 2016 году была опубликована совместная работа IRENA (Международного агентства возобновляемой энергетики) и МЭА (Международного энергетического агентства) «End-of-Life Management: Solar Photovoltaic Panels», в которой подробно описываются технологии и стратегии утилизации фотоэлектрических модулей.


В работе показано, что к 2030 году в мире образуется 1,7-8 млн тонн отходов фотовольтаки (накопленным итогом) в зависимости от рассмотренных сценариев (regular loss – использование модулей в течение 30-летнего срока службы, early loss – раннее окончание рока службы по разным причинам, например, замена морально устаревшего оборудования на более современное). Такое количество «солнечного мусора» соответствует 3-16% сегодняшнего годового объема электронных отходов. К 2050 объемы (накопленным итогом) солнечных панелей, отслуживших свой срок, вырастут значительно – до 60-78 млн тонн.

Регулирование.

В большинстве стран солнечные панели классифицируются как общие или промышленные отходы, управление ими осуществляется в соответствии с обычными требованиями, касающимися обработки и утилизации отходов. Помимо такого универсального регулирования разрабатываются добровольные и нормативные подходы для специального управления «солнечным мусором».


Европейский союз (ЕС) первым ввёл правила утилизации отходов солнечных электростанций – модули должны утилизироваться в соответствии с Директивой об отходах электрического и электронного оборудования (WEEE) (2012/19/EU).


С 2012 года положения Директивы WEEE были включены в национальное законодательство странами-членами ЕС, создав первый рынок, на котором переработка солнечных модулей обязательна.

В Соединенных Штатах утилизация панелей регулируется Законом о сохранении и восстановлении ресурсов (Resource Conservation and Recovery Act), который является правовой основой для управления опасными и неопасными отходами.


В 2016 году Ассоциация солнечной энергетики США (SEIA) в партнёрстве с производителями солнечных модулей и монтажными организациями запустила национальную программу добровольной утилизации панелей, которая направлена ​​на то, чтобы сделать эффективные решения по переработке более доступными для потребителей.


В Японии отработанные солнечные панели подпадают под общие регламенты по управлению отходами (Waste Management and Public Cleansing Act). В 2015 году была разработана дорожная карта для продвижения схемы сбора, переработки и надлежащего обращения с оборудованием возобновляемой энергетики с истекшим сроком эксплуатации.

В 2017 году японская Ассоциация солнечной энергетики (Japan Photovoltaic Energy Association — JPEA) опубликовала руководство по надлежащему обращению с солнечными модулями по окончании срока их службы (документ имеет рекомендательный характер). Дополнительно, Национальный институт передовых промышленных наук и технологий (NEDO) разрабатывает технологию переработки.


В Китае пока нет специальных правил по утилизации солнечных модулей. В рамках Национальной научно-технической программы в течение 12-ой пятилетки финансировались исследования и разработки в области обращения с «солнечными отходами».


В Индии отходы фотоэлектрической энергетики управляются Министерством окружающей среды, лесов и изменения климата в соответствии с Правилами обращения с твердыми отходами 2016 года и Правилами опасными и другими отходам (управление и трансграничное перемещение).


На международном уровне новый стандарт лидерства в области экологической устойчивости для фотоэлектрических модулей (NSF 457 — Sustainability Leadership of Photovoltaic Modules) включает в себя критерии управления этими изделиями по окончании срока их эксплуатации.

Политика производителей солнечных модулей.

Сегодня многие производители уже предлагают услуги по утилизации выпущенных ими солнечных модулей и создают специализированные предприятия по их переработке. Здесь действует принцип «расширенной ответственности производителя» (extended-producer-responsibility), которая выходит за рамки стадий продажи и эксплуатации, и охватывает также стадию обращения с продуктом после завершения его срока службы.


Например, американская First Solar еще в 2005 году создала глобальную программу по сбору и переработке своих солнечных модулей (тонкопленочные панели CdTe). Технология позволяет обеспечить повторное использование 90% полупроводниковых материалов и стекла. С 2018 перерабатывающие предприятия компании работают с нулевым стоком жидких отходов.


Такая политика производителей обусловлена не только постоянным ужесточением требований регуляторов или «повышенной социальной ответственностью». Переработка солнечных модулей не лишена экономического смысла (см. далее).

Технологии переработки и извлечение материалов.

Как известно, в иерархии обращения с отходами на первом месте стоит предотвращение образования отходов. В солнечной энергетике данная задача решается посредством постоянного снижения удельной материалоемкости изделий.


В последние годы в Европе, Китае, Японии, США и Корее активно спонсировались проекты НИОКР, касающиеся технологий переработки солнечных модулей, и в тех же регионах была зарегистрирована значительная патентная активность как в области технологии переработки кристаллического кремния (c-Si), так и для тонкопленочных фотоэлектрических модулей.


Можно разделить «грубую» переработку (извлечение стекла, алюминия, меди — материалов, которые составляют основную массу модуля) и тонкую переработку (high-value recycling), подразумевающую извлечение практически всех химических элементов, используемых в фотоэлектрической панели.

В связи с тем, что сегодня объемы «солнечных отходов» невелики, модули в основном перерабатываются на заводах, предназначенных для переработки многослойного стекла, металлов или электронных отходов.


В результате грубой переработки выделяются только основные (по массе) материалы — стекло, алюминий и медь, в то время как солнечные ячейки и другие материалы, такие как пластмассы, сжигаются (или отправляются на полигоны).

То есть грубая переработка аналогична существующей технологии повторного использования ламинированного стекла в других отраслях промышленности и не обеспечивает восстановление экологически опасных (например, Pb, Cd, Se) или ценных (например, Ag, In, Te, Si) материалов.


Тонкая переработка состоит из трех основных этапов: 1) предварительная обработка, включающая удаление металлической рамы и распределительной коробки, 2) деламинация и удаление ламинирующей плёнки и 3) извлечение стекла и металлов.


Солнечные модули состоят из стекла, алюминия, меди и полупроводниковых материалов, которые могут быть извлечены и использованы повторно.


Обычные панели из кристаллического кремния состоят (по массе) из 76% стекла, 10% полимерных материалов, 8% алюминия, 5% кремниевых полупроводников, 1% меди, менее 0,1% серебра и других металлов, включая олово и свинец. В тонкопленочных модуляx доля стекла гораздо выше — 89% (CIGS) и 97% (CdTe).


Как уже отмечалось, сегодня объемы отходов солнечной энергетики невелики, поскольку отрасль молодая, а гарантийный срок службы модулей обычно составляет 25 лет и больше. В то же время в не таком уж далеком будущем нас ждет экспоненциальный рост этих объемов.


К 2030 году объем отходов солнечной энергетики увеличатся в 40 раз, и это в рамках консервативного («regular loss») сценария.

В данном случает стоимость извлеченных материалов будет составлять примерно 450 млн долларов США.


К 2050 году рынок вырастет до 15 млрд долларов в год, а из накопленного объема отходов можно будет произвести 2 млрд солнечных модулей (эквивалентно 630 ГВт)!

Сегодня в Европе извлекается для повторного использования 65-70% (по массе) материалов, из которых состоят солнечные модули, что соответствует Директиве ЕС WEEE. CENELEC, Европейский комитет по стандартизации электротехники, разработал дополнительный стандарт для сбора и переработки панелей (EN50625-2-4 и TS50625-3-5).


В стандарте указаны различные административные, организационные и технические требования, направленные на предотвращение загрязнения и ненадлежащего обращения, минимизацию выбросов, содействие увеличению доли восстановленных материалов и операций по глубокой переработке. Он также препятствует отгрузке модулей-отходов на объекты, которые не соответствуют стандартным требованиям охраны окружающей среды и здоровья.


Стандарт включает в себя конкретные требования к очистке отходов, в соответствии с которыми содержание опасных веществ в фракциях выпускаемого после переработки стекла не должно превышать следующих предельных значений:

  • кадмий: 1 мг/кг (сухое вещество) (кремниевые модули); 10 мг/кг (сухое вещество) (не кремниевые модули);

  • селен: 1 мг/кг (сухое вещество) (кремниевые модули); 10 мг/кг (сухое вещество) (не кремниевые модули);

  • свинец: 100 мг/кг (сухое вещество).


Демонтаж электростанций и утилизация модулей – экономика.

Вопрос рентабельности переработки солнечных моделей не имеет однозначного ответа. Считается, что при больших объемах отходов (минимум 20 000 тонн в год) можно достигнуть безубыточности процессов переработки в рамках соответствующих предприятий.


Вопрос экономики утилизации модулей часто рассматривается в контексте ликвидации более крупных объектов.

Проектная и разрешительная документация на строительство крупных солнечных электростанций как правило включает требования по демонтажу объектов после окончания срока их службы и восстановлению земельных участков до первоначального состояния.

Для того чтобы чистые затраты на вывод из эксплуатации были отрицательными (окупались), стоимость извлеченных материалов и/или стоимость освободившейся земли должны превышать затраты на вывод из эксплуатации. С одной стороны, полный демонтаж фотоэлектрической солнечной электростанции – достаточно простая операция, поскольку здесь нет капитальных строений с серьезными фундаментами. С другой стороны, на таких объектах используется большое количество стали, меди и алюминия, и ценность этих материалов вполне может превышать расходы на вывод эксплуатации.


Действительно, недавний экономический анализ показывает, что стоимость лома фотоэлектрической электростанции (в основном сталь и медь) превышает затраты на вывод из эксплуатации, что делает переработку предпочтительнее захоронения отходов.


В сценариях глубокой переработки чистый доход в результате работ по выводу объекта из эксплуатации может составлять US$0,01-0,02/Ватт (без учета стоимости земли).


Таким образом, при надлежащей организации переработка отходов солнечных электростанций может быть выгодной даже без дополнительных мер стимулирования/регулирования.


Вывод.

Сегодня отходы солнечных электростанций не являются значимой мировой проблемой, поскольку их объёмы малы – доли процента электронного мусора (e-waste), образующегося на планете каждый год. При этом, в соответствии с поговоркой «готов сани летом..», задача эффективной переработки солнечных модулей по окончании срока их использования уже основательно проработана.


Источник

Просмотров: 4
Подпишитесь на новый контент
  • Grey Facebook Icon

©2020 ООО "Зеленый офис": ecogreenoffice.club/ ecogreenstandard.ru/ecogreenstandard.info